Emissions
The simple chemical structure of DME, as well as vaporisation and ignition properties, are beneficial for combustion in diesel engine. This, combined with high oxygen content of DME, leads to low particulate matter (PM) emission. Nitrogen oxide emissions (NOx) are not necessarily reduced with DME when compared with diesel engine. Noise level of DME engine is lower than that of diesel engine.
Fleisch et al. (1995) studied DME and two blends containing DME, methanol (3% and 10%) and water (3% and 10%). Fuel economy and performance of a Navistar 7.3 L V-8 engine were better or equal for DME than for diesel. Very low emission level was achieved with DME. Smokeless operation with DME enabled high EGR rates to reduce NOx emission. DME blended with methanol and water (fuel-grade DME) resulted in low smoke and NOx emissions, but elevated CO and HC emissions when compared with neat DME. (Fleisch et al. 1995). Kajitani et al. (1997) found almost negligible soot and HC emissions for DME. NOx emissions were at the same level for DME as for diesel fuel when injection timing was not delayed.
A prototype of heavy-duty DME truck was studied in the IEA-AMF Task 37 (Nylund and Koponen 2012). This was a 26 ton three-axle truck with power output of 440 hp. PM and particle number emissions were lower for a DME prototype truck than for a diesel bus, which was not equipped with a particulate filter. NOx, CO, HC and methane emissions were at the same level for a DME prototype truck as for a diesel bus. (Nylund&Koponen 2012).

