

The Contribution of Advanced Renewable Transport Fuels to **Transport Decarbonisation** in 2030 and beyond

Electrofuels contribution Dr Ilkka Hannula

All products currently made from oil could also be made from CO₂ and hydrogen

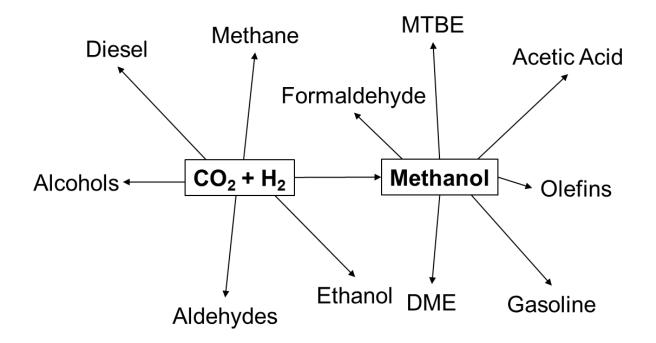


Figure modified from Spath & Dayton 2003, NREL/TP-510-34929

Electrolysis of water

- Hydrogen (H₂) can be produced by passing an electric current through two electrodes immersed in water.
- In the process, water molecules are split to produce oxygen and hydrogen.
- Presently electrolytic H₂ is limited to small or special applications
- Larger quantities are produced by steam reforming of natural gas or other fossil fuels.

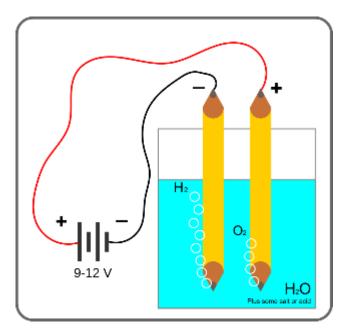
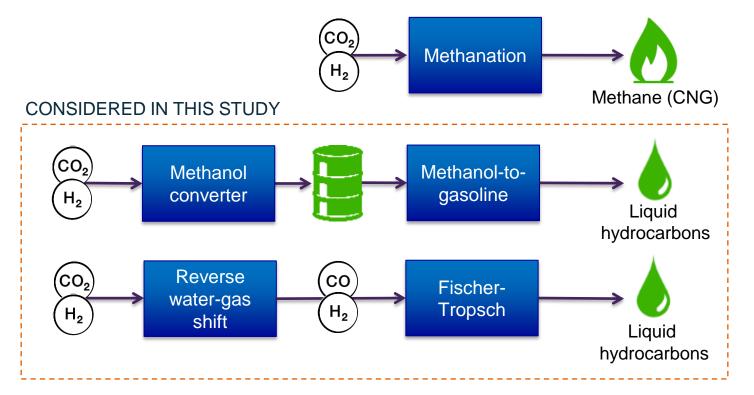
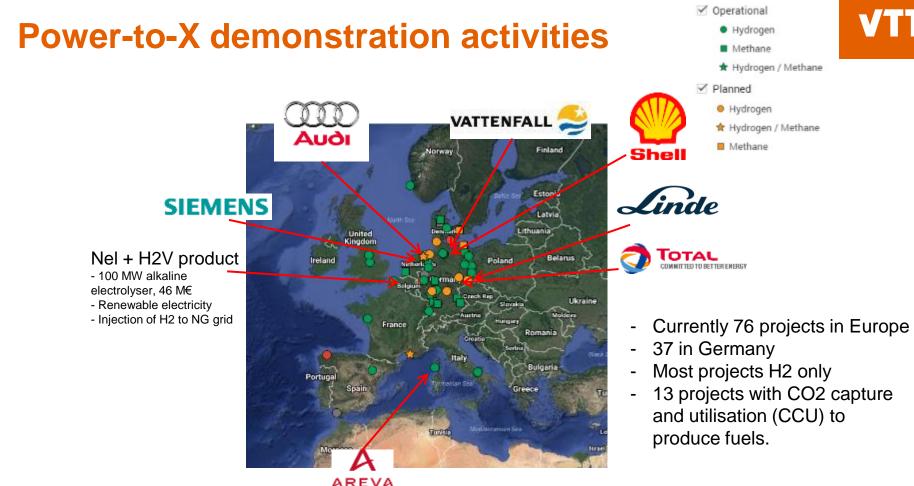




Figure by Nevit Dilmen, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10959462

Relevant routes for transport decarbonisation via electrofuels

MALYN

Source: http://www.europeanpowertogas.com/

Audi E-gas Plant

Location: Werlte, Germany Start-up: 2014 Electricity input: 6 MW Methane output: 3.2 MW Net efficiency: 54 % (LHV) Investment: 20 M€

VTT

CRI Georg Olah Renewable Methanol Plant

Location: Iceland Commissioned: 2011 Upgraded: 2014-2015. Electricity input: 5.7 MW (three alkaline electrolysers) CO_2 source: geothermal Methanol output: 4 000 t/yr

"Apples-to-apples" comparison* of road transport decarbonisation options

Article

Near-Term Potential of Biofuels, Electrofuels, and Battery Electric Vehicles in Decarbonizing Road Transport

- Sustainable fuels found competitive over long distances even as electric vehicles become cheaper
- Electrofuels remain expensive in the near term and are difficult to scale up in the longer term.
- Synthetic biofuels identified as being more competitive than electrofuels at the present time.
- At this state, we need a wide portfolio where we focus on learning-by-doing and economies of scale.

*) Hannula, I. and Reiner, D.M. The role of carbon-neutral synthetic fuels and battery electric vehicles in a sustainable transport system. Joule 2019;3. DOI: 10.1016/j.joule.2019.08.013.

Near-term production cost estimates for electrofuels at commercial scale

Plant configuration	Capacity factor	Energy cost ^(a) \$/MWh		Electricity gCO ₂ /kWh ^(c)	End-product gCO ₂ /MJ ^(d)	Emissions relative to fossil ^(e)
Synthetic biofuels	85%	8	100 - 128		5	7%
Generator-connected electrofuels						
Solar PV - Utility scale						
Crystalline	30%	46	269 - 325	18	13	16 %
Thin film	32%	43	252 - 305	18	13	16 %
Wind						
Onshore	55%	30	161 - 192	7	5	6 %
Offshore	50%	71	292 - 326	8	6	7 %
Grid-connected electrofuels						
EU-28	90%	126	423 - 442	447	310	410 %
Germany	90%	165	539 - 558	615	427	564 %
France	90%	99	340 - 359	105	73	96 %
Sweden	90%	73	263 - 282	47	33	43 %
Norway	90%	90	313 - 332	9	6	8 %

Source: Hannula, I. and Reiner, D.M. The role of carbon-neutral synthetic fuels and battery electric vehicles in a sustainable transport system. Joule 2019;3. DOI: 10.1016/j.joule.2019.08.013.

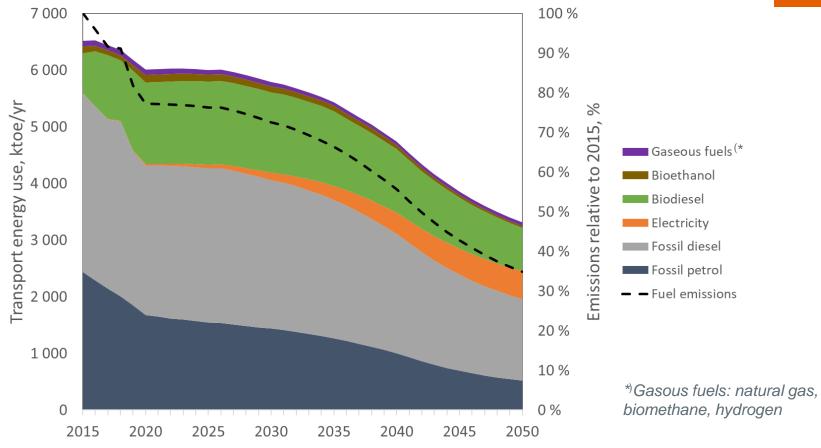
Near-term production cost estimates for electrofuels at commercial scale

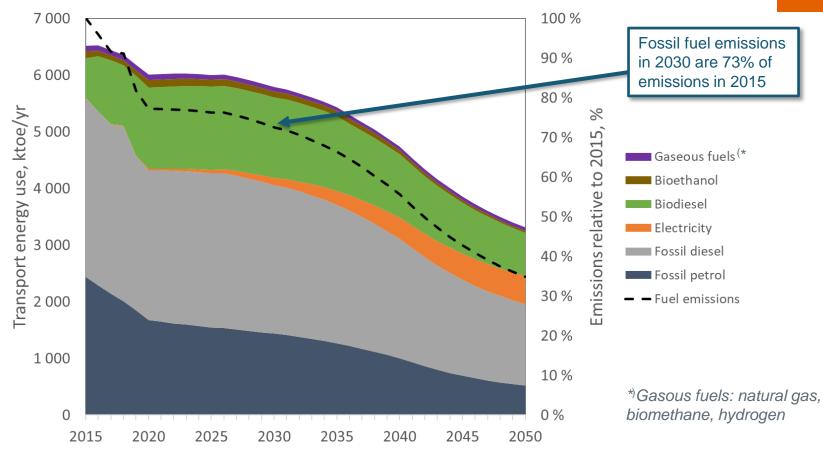
Plant configuration	Capacity factor	Energy cost ^(a) \$/MWh		Electricity gCO ₂ /kWh ^(c)	End-product gCO ₂ /MJ ^(d)	Emissions relative to fossil ^(e)
Synthetic biofuels	85%	8	100 - 128		5	7%
Generator-connected electrofuels						
Solar PV - Utility scale						
Crystalline	30%	46	269 - 325	18	13	16 %
Thin film	32%	43	252 - 305	18	13	16 %
Wind						
Onshore	55%	30	161 - 192	7	5	6 %
Offshore	50%	71	292 - 326	8	6	7 %
Grid-connected electrofuels						
EU-28	90%	126	423 - 442	447	310	410 %
Germany	90%	165	539 - 558	615	427	564 %
France Unit conversions from \$/bbl:	90%	99	340 - 359	105	73	96 %
Sweden - Divide by 1.5 to get \$/MWh - Multiply by 8 to get \$/tonne		73	263 - 282	47	33	43 %
Norway	90%	90	313 - 332	9	6	8 %

^{b)} Breakeven oil price (BEOP) is the price of crude oil at which the electrofuels production cost (on a \$/GJ LHV basis) equals the wholesale (refinery-gate) price of the equivalent petroleum-derived products.

Near-term production cost estimates for electrofuels at commercial scale

Plant configuration	Capacity E factor	nergy cost ^(a) \$/MWh		Electricity gCO ₂ /kWh ^(c)	End-product gCO ₂ /MJ ^(d)	Emissions relative to fossil ^(e)
Synthetic biofuels	85%	8	100 - 128		5	7%
Generator-connected electrofuels						
Solar PV - Utility scale						
Crystalline	30%	46	269 - 325	18	13	16 %
Thin film	32%	43	252 - 305	18	13	16 %
Wind						
Onshore	55%	30	161 - 192	7	5	6 %
Offshore	50%	71	292 - 326	8	6	7 %
Grid-connected electrofuels						
EU-28	90%	126	423 - 442	447	310	410 %
Germany	90%	165	539 - 558	615	427	564 %
France	90%	99	340 - 359	105	73	96 %
Sweden	90%	73	263 - 282	47	33	43 %
Norway	90%	90	313 - 332	9	6	8 %

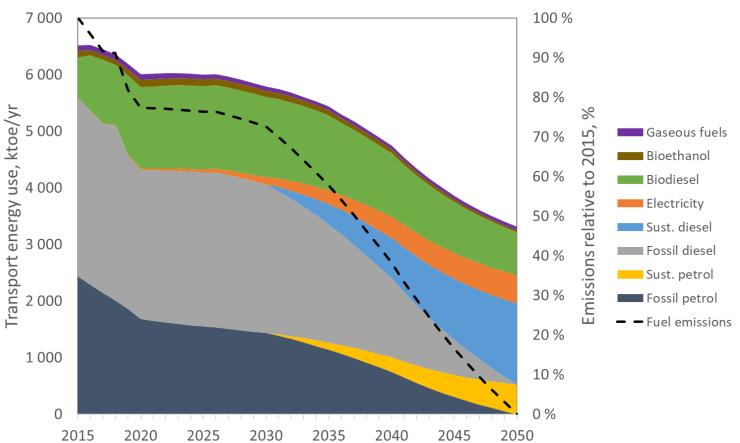

VTT


Sweden

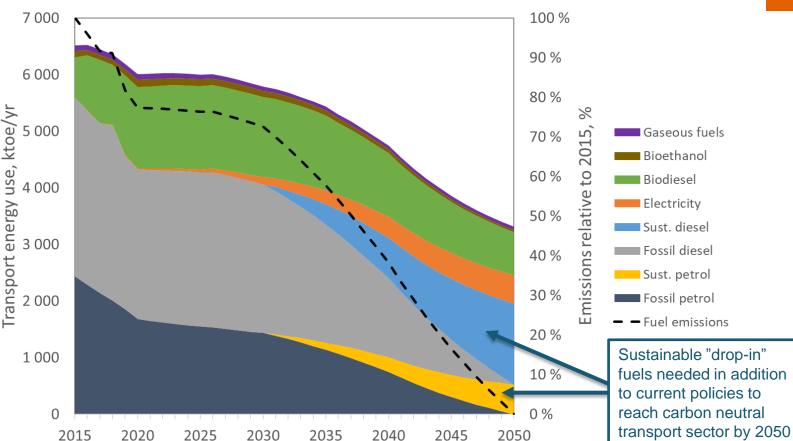
VTT

Sweden, Stated Policies scenario

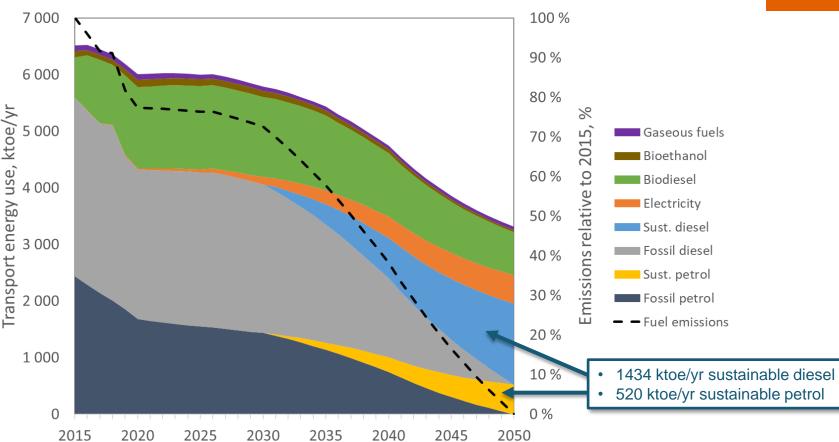
Sweden, Stated Policies scenario



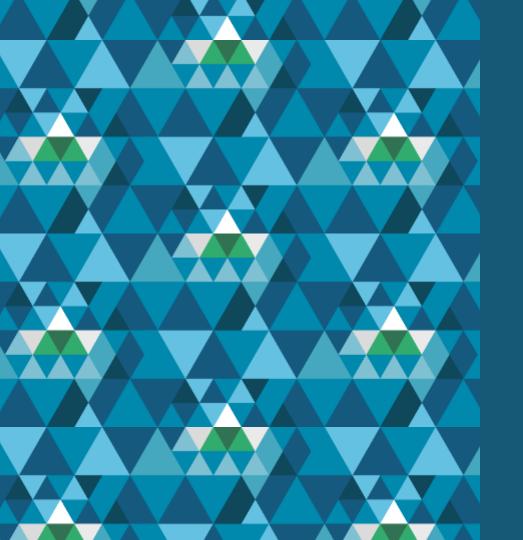
Sweden, Stated Policies scenario



Sweden, Fossil-free Transport scenario

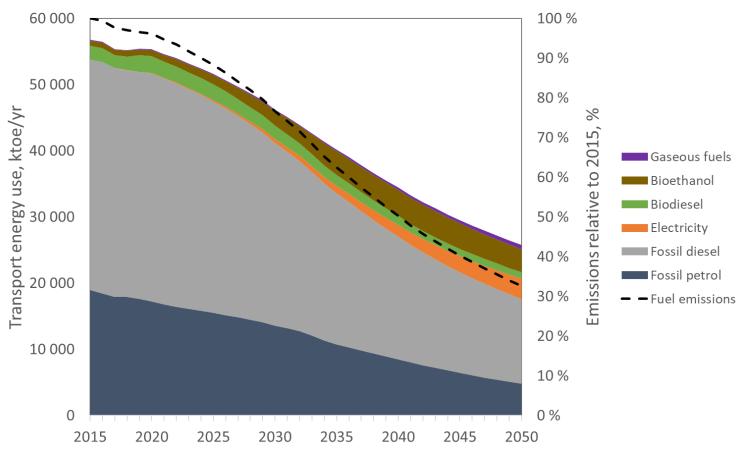

VTT

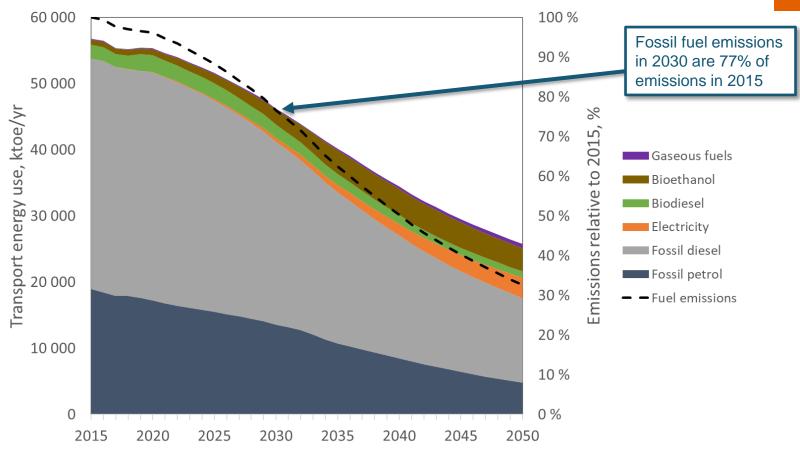
Sweden, Fossil-free Transport scenario



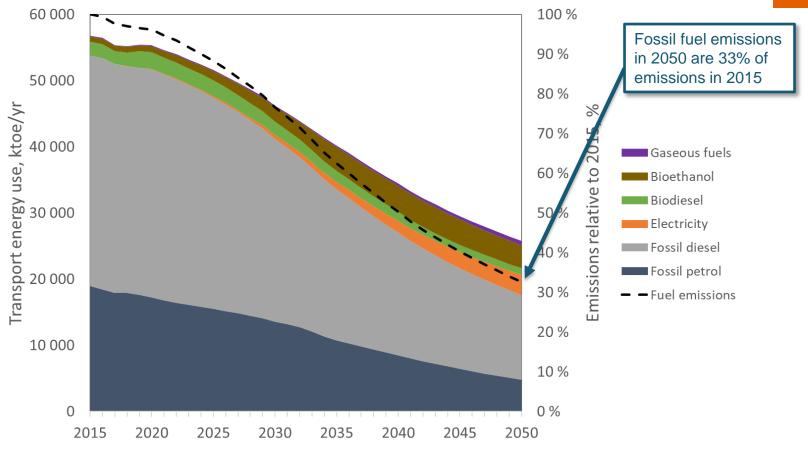
Sweden, Fossil-free Transport scenario

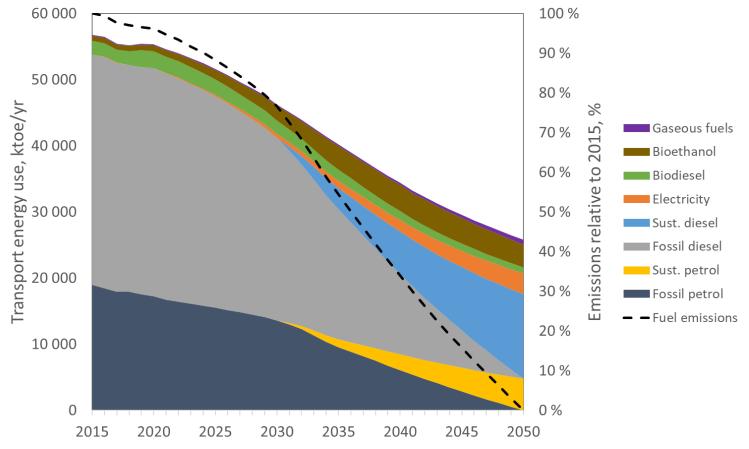
Results for Sweden

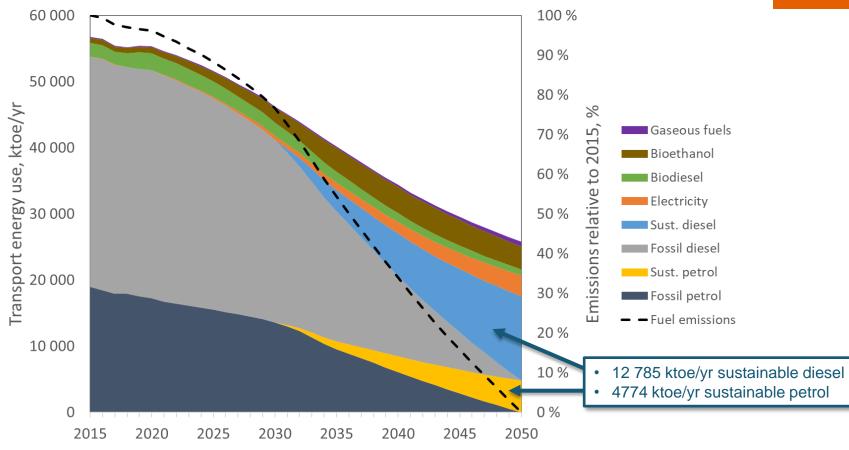

- Additional amount of sustainable fuels could come from a combination of domestically produced & imported advanced biofuels
- However, if supplied as electrofuels, it would require
 - 8 Mt of CO₂/yr, ~19% of Sweden's industrial emissions (39 MtCO₂)*, and
 - 57 TWh/yr of electricity that is
 - 30% of Sweden's current total power generation of 191 TWh/yr
 - 36% of Sweden's current low-carbon power generation of 157 TWh/yr
 - 61% of Sweden's current renewables generation of 94 TWh/yr


Germany

VTT


Germany, Stated Policies scenario


Germany, Stated Policies scenario


Germany, Stated Policies scenario

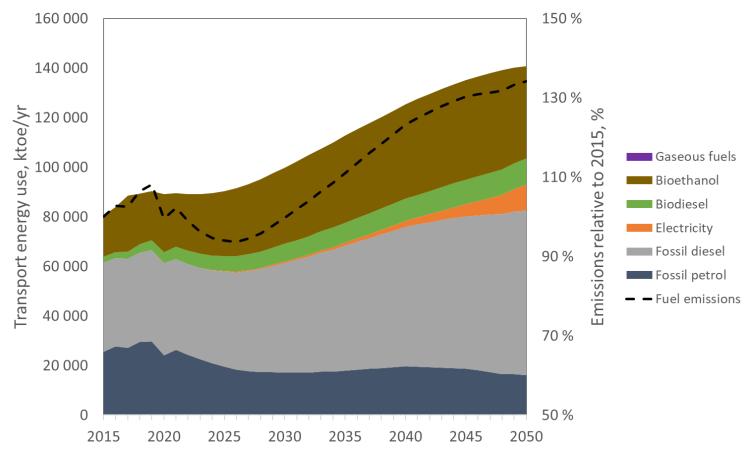
Germany, Fossil-free Transport scenario

Germany, Fossil-free Transport scenario

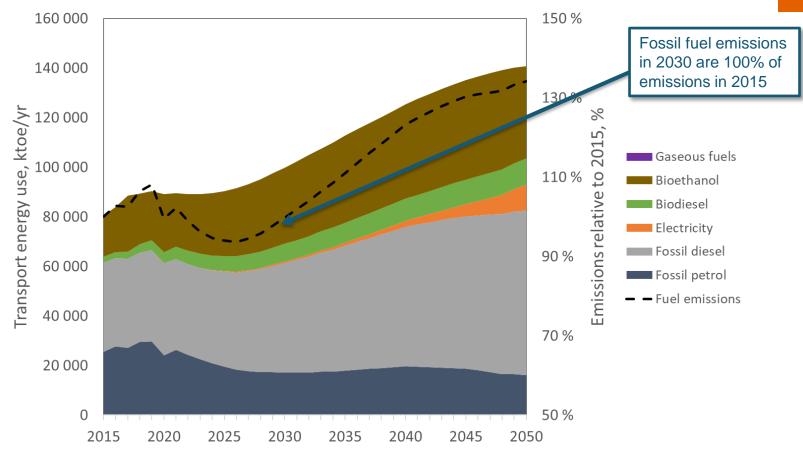
Results for Germany

- Additional amount of sustainable fuels could come from a combination of domestically produced & imported advanced biofuels
- However, if supplied as electrofuels, it would require
 - 68 Mt of CO₂/yr ~37% of Germany's industrial emissions (184 MtCO₂)*, and
 - 511 TWh/yr of electricity that is
 - 70% of Germany's current total power generation of 729 TWh/yr
 - 169% of Germany's current low-carbon power generation of 302 TWh/yr
 - 225% of Germany's current renewable power generation of 226 TWh/yr

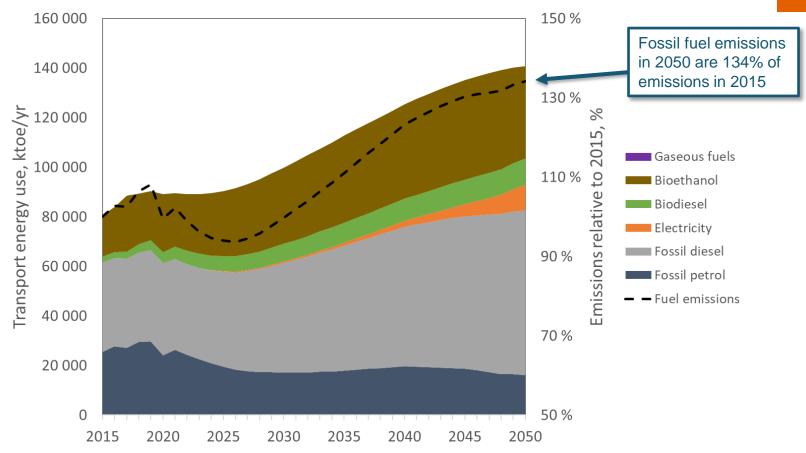
*) https://www.umweltbundesamt.de/en/indicator-greenhouse-gas-emissions-in-industry

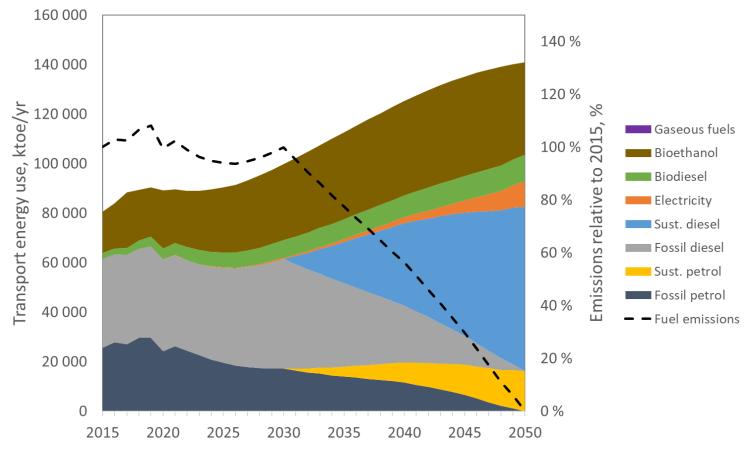


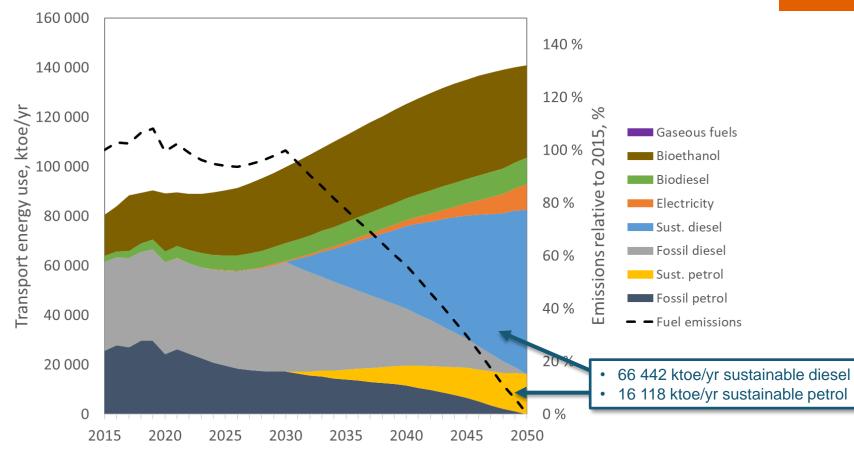
Brazil


11/19/2019

VTT


Brazil, Stated Policies scenario


Brazil, Stated Policies scenario


Brazil, Stated Policies scenario

Brazil, Fossil-free Transport scenario

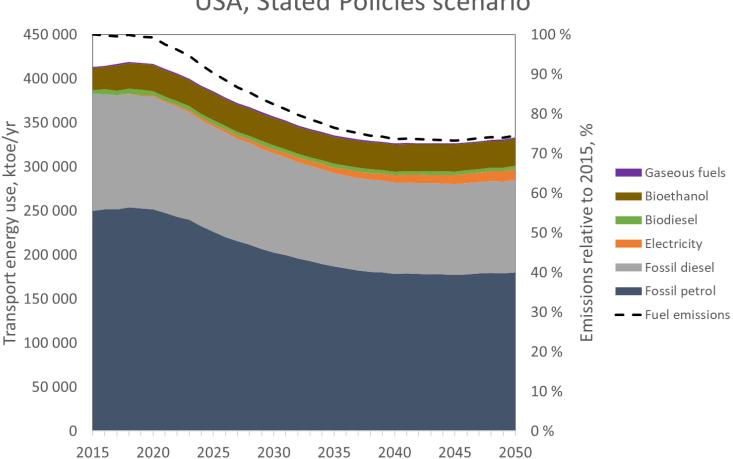
Brazil, Fossil-free Transport scenario

Results for Brazil

- Additional amount of sustainable fuels could come from a combination of domestically produced & imported advanced biofuels
- However, if supplied as electrofuels, it would require
 - 320 Mt of CO₂/yr that is 242% of Brazil's industrial emissions (132 MtCO₂)*, and
 - 2400 TWh/yr of electricity
 - 462% of Brazil's current total power generation of 520 TWh/yr**
 - 577% of Brazil's current **renewable** power generation of 416 TWh/yr**

^{*)} https://www.worldometers.info/co2-emissions/brazil-co2-emissions/

^{*) &}lt;u>https://www.iea.org/countries/brazil/</u>

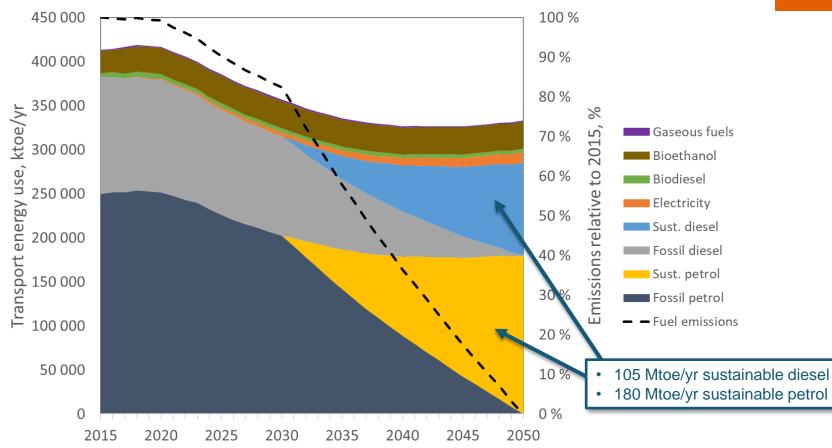


USA

11/19/2019

VTT

USA, Stated Policies scenario


USA, Stated Policies scenario

450 000 100 % Fossil fuel emissions 90 % in 2030 are 82% of 400 000 emissions in 2015 80 % 350 000 Transport energy use, ktoe/yr % 2015, 70 % 300 000 Gaseous fuels to 60 % Bioethanol 250 000 Emissions relative Biodiesel 50 % Electricity 200 000 Fossil diesel 40 % Fossil petrol 150 000 30 % - Fuel emissions 100 000 20 % 50 000 10 % 0 % 0 2015 2020 2025 2030 2035 2040 2045 2050

USA, Stated Policies scenario

450 000 100 % Fossil fuel emissions 90 % in 2050 are 74% of 400 000 emissions in 2015 80 % 350 000 Transport energy use, ktoe/yr % 2015, 70 % 300 000 Gaseous fuels 60 % to Bioethanol 250 000 Emissions relative Biodiesel 50 % Electricity 200 000 Fossil diesel 40 % Fossil petrol 150 000 30 % - Fuel emissions 100 000 20 % 50 000 10 % 0 % 0 2015 2020 2025 2030 2035 2040 2045 2050

USA, Fossil-free Transport scenario

Results for the USA

- Additional amount of sustainable fuels could come from a combination of domestically produced & imported advanced biofuels
- However, if supplied as electrofuels, it would require
 - 1105 Mt of CO₂/yr ~78% of USA's industrial emissions (1421 MtCO₂)*, and
 - 8288 TWh/yr of electricity that is
 - 198% of USA's current total power generation of 4196 TWh/yr
 - 537% of USA's current low-carbon power generation of 1543 TWh/yr
 - **1129%** of USA's current **renewable** power generation of 734 TWh/yr

*) <u>https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions</u>

Results for the USA

Year	Power grid emissions, gCO ₂ /kWh	Electrofuels emissions relative to fossils
2010	552	506%
2015	471	431%
2020	390	357%
2025	364	334%
2030	351	322%
2035	332	304%
2040	317	290%
2045	305	279%
2050	291	267%

VTT

Summary of results

Country	Stated Policies emissions in 2050 relative to 2015	Fossil-free transport via E-fuels: Low-C power share*	Fossil-free transport via E-fuels: Industrial CO ₂ demand
Sweden	35%	36%	19%
Germany	33%	169%	37%
Brazil	134%	577%	242%
USA	74%	537%	78%

*) Electricity need for electrofuels production divided by current electricity generation from non-fossil sources

The Contribution of Advanced Renewable Transport Fuels to **Transport Decarbonisation** in 2030 and beyond

More information: <u>https://iea-amf.org/content/news/TD-WS</u> Contact: <u>dina.bacovsky@best-research.eu</u>

Technology Collaboration Programme