

The Contribution of Advanced Renewable Transport Fuels to **Transport Decarbonisation** in 2030 and beyond

The Role of Renewable Transport Fuels in the United States

IEA Transport Decarbonisation Workshop November 18, 2019

Alicia Lindauer

Technology Manager Bioenergy Technologies Office U.S. Department of Energy The U.S. uses 107 EJ* of primary energy each year

- Coal, 14 EJ
- Natural gas, 33 EJ
- Petroleum, 39 EJ
- Nuclear, 9 EJ
- Renewables, 12 EJ

*1 EJ is equal to 948.45 tBtu

Source: U.S. Energy Information Administration, Monthly Energy Review, July 2019

Transportation Uses 28% of Nation's Energy

Source: TEDB, 2019

Liquid Fuels will Remain Important for Transportation

Source: EIA 2019 Annual Energy Outlook

Energy related CO₂ emissions from 1990 to 2018

Source: Rhodium Group

CO₂ Intensity is Projected to Decrease due to Fuel Mix Changes

The transportation sector is projected to maintain the highest CO₂ intensity

Note: Carbon dioxide intensities are calculated as carbon dioxide emissions per unit energy output (in British thermal units).

Source: EIA 2019 Annual Energy Outlook

U.S. fuel production by type	Million Gallons	%
Renewable fuel (-20% GHG)	14,955	86%
Ethanol (corn)	14,955	
Advanced (-50% GHG)	2,212	12.5%
Biodiesel	1,855	
Renewable diesel	305	
Other	52	
Cellulosic (-60% GHG)	275	1.5%
Ethanol	6.5	
Renewable natural gas		
(LNG/CNG)	268	
Other	0.5	

U.S. biofuels provide 5% of total fuel demand

97% of biofuels are produced from starch or vegetable oil

~3% of biofuels are produced from waste C (animal fat or landfill gas)

~0.04% cellulosic ethanol

Federal Policies for GHG Emission Reduction in Road-Transportation Sector

Corporate Average Fuel Economy (CAFE) Standards

- Regularly increase the fuel economy required by automakers
- Cars and light trucks of model year 2017-2021
 - 40.3-41 mpg on average
 - 163 grams/mile of CO₂

Renewable Fuel Standard

- Established in the 2007 Energy Independence and Security Act
- Target 36 billion gallons of renewable fuel production by 2022
- Volume targets adjusted annually by the Environmental Protection Agency
- Fuels must reach a set GHG reduction threshold to qualify as renewable

Volume Targets for Renewable Fuel

State Level Policies and Programs

California's Low-Carbon Fuel Standard (LCFS)

- Goal of reducing carbon intensity of transportation fuel pool 20% between 2011 and 2030
- Market for carbon credit transcations exceeding \$2 billion in 2018

U.S. Climate Alliance

- 24 States and Puerto Rico joined to advance goals of the Paris Agreement
- Reduce GHG Emissions 26-28% below 2005 levels by 2025

Declining Carbon Intensity Curve

Source: UN Foundation

The **Bioeconomy Initiative** is a coordinated federal effort to expand the sustainable use of the nation's abundant biomass resources for biofuels, bioproducts, and biopower.

The Framework is now live and available at

https://biomassboard.gov/pdfs/Bioeconomy_Initiative_Implementation_Framework_FINAL.pdf

Efforts Within U.S. Department of Energy (DOE)

Co-Optimization of Fuels and Engines (Co-Optima) Initiative

Objective: Advance the underlying science needed to develop fuel and engine technologies that will work in tandem to achieve significant efficiency and emissions benefits

Exploring Opportunities for CO₂ Utilization

Increasing Deployment and Decreasing Costs of Renewable Electricity

Growing Need and Opportunity for Utilizing Gaseous Carbon Waste Streams

Government, NGO, Industry, Academia, National Academy of Sciences*

IRENA, Renewable Power Generation Costs in 2017

Future Levelized Costs: \$0.02 -\$0.07/kWh*

Improve Carbon Utilization while Expanding Markets for H₂
Offer Lower Carbon Intensity Liquid Fuels to Legacy Vehicles

Summary

- Currently no national targets for CO₂ emissions reduction in the USA
- Drivers for transportation decarbonization include:
 - Vehicle efficiency targets (CAFE)
 - Renewable fuel targets (RFS)
 - State level initiatives (LCFS)
- Advanced and cellulosic biofuels production have lagged behind original RFS targets
- R&D efforts at the US Department of Energy focused on:
 - Improving efficiency and emissions (vehicle and system)
 - Reducing cost of biofuels
 - Using lower C intensity fuels and feedstocks
 - Looking at CO₂ as a feedstock resource
- Need to go beyond current efforts if goal is to truly decarbonize

Alicia Lindauer

Bioenergy Technologies Office Energy Efficiency and Renewable Energy U.S. Department of Energy +1-720-356-1356 Alicia.Lindauer@ee.doe.gov

The Contribution of Advanced Renewable Transport Fuels to **Transport Decarbonisation** in 2030 and beyond

More information: <u>https://iea-amf.org/content/news/TD-WS</u> Contact: <u>dina.bacovsky@best-research.eu</u>

Technology Collaboration Programme