

Life Cycle Analysis of E-Fuels with the GREET Model

Michael Wang

Systems Assessment Center
Energy Systems and Infrastructure Analysis Division
Argonne National Laboratory

The GREET (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) model framework

Argonne has been developing the GREET life-cycle analysis (LCA) model since 1994 with annual updates and expansions

GREET is available at greet.anl.gov

(Vehicle manufacturing

cycle as the example) VEHICLE CYCLE (GREET 2 Series)

GREET covers an extensive list energy systems

- Natural gas
 Shale gas
 Renewable natural gas
 Coal mine methane
 Electricity/Heat
 Hydrogen
 Methanol
 Ammonia
 Diesel/jet fuel
- Natural gas
 Coal
 Nuclear
 Hydro
 Wind
 Solar
 etc.

 Electricity: national,
 NERC, and state level

ARGONNE HAS BUILT COMPREHENSIVE SYSTEM ASSESSMENT CAPABILITY FOR CCUS

CCUS Topics	Current Research
CO ₂ Capture & Compression	Process Modeling, TEA and LCA of CC technologies
CO ₂ Transport	CO ₂ pipeline transportation cost
CO ₂ Utilization	Process modeling, TEA and LCA of CO2U
H₂ Production	H ₂ production technologies and market analysis TEA and LCA
H ₂ Transport	TEA and LCA of H ₂ liquefaction, compression, delivery and fueling infrastructure
H ₂ Storage	TEA and LCA of H ₂ storage
Electricity Supply	TEA and LCA of electric power supply by technology and region
Water Resources	Regional water availability, footprint, and stress of CO ₂ U technology deployment

GREET CCUS life cycle analysis includes all the supply chains

CO₂ SOURCE

Biomass- and waste- derived CO₂

- Ethanol plants
- Biomass gasification Plants
- Waste streams (MSW, residues, waste plastics)

Fossil-derived CO₂

- NG processing plants
- NG SMR plants
- NG Ammonia plants
- Cement plants
- Steel mills
- Fossil power plants

Atmospheric CO₂

CCUS for e-fuel technologies in GREET

Renewable electricity and H₂ are key for low-carbon e-fuels

Life-cycle GHG emissions of Fischer-Tropsch fuels

■ E-FT fuels show significant GHG reduction benefits coupled with renewable H₂.

Summary

- Outstanding LCA issues for CCUS fuel production
 - Handling of different CO₂ sources (biogenic, fossil, DAC)
 - Intermittent renewable electricity: need for energy storage?
 - Infrastructure impact: embodied GHG emissions for solar and wind power?
- Regional resource availability: CO₂, electricity, and water for H₂, logistics

