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E-fuels value chain study- Process modeling, TEA and LCA, supply & market
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We evaluate the full efuels
value chain including CCUS
and H2 value chains.

H2 value chain includes
production (with/without
embodied emission),
infrastructure (pure and H2/NG
blend), refueling for vehicles
and H2 for industrial use.
CCUS value chain covers
capture (from various sources
and DAC), infrastructure,
utilization for
fuels/chemicals/materials, and
storage.

HDSAM for H2 infrastructure
HCSAM and NH3 infrastructure

https://hdsam.es.anl.gov/
https://www.hydrogen.energy.gov/docs/hydrogenprogramlibr
aries/pdfs/review24/in025_elgowainy_2024_o.pdf?sfvrsn=1
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E-FUELS STUDY TOOLS

Process and infrastructure modeling
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Life cycle analysis (LCA) by using GREET model
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Technoeconomic analysis (TEA) (cost $3$)
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Regional analysis with variation in technology,
supply, storage and cost
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INDUSTRIAL CO2 SOURCE LOCATIONS AND AMOUNTS

Industrial sector is the second
largest CO, emission source,

Industrial CO, Source Distribution in the U.S. (as of now)
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() Ethanol
) Ammonia

@ NG Processing

after transportation sector.

Industrial sector emission is
sourced from both process and
fuels combustion.

The CO, capture energy demand
and cost generally increases with
decreasing purity.

Industrial CO, Source Data

CO, Supply Amount
of Each Facility [MMT/yr]

o O O

0.1 1 2 4

Available
Sector Purity P?aro1];s CO2
[MMT/yr]
Ethanol High 136 27
Ammonia High 26 20
NG Processing High 44 10
Hydrogen Mid 74 40
Cement Mid 89 64
Iron and Steel Mid 18 37




COST OF CO, CAPTURE AND COMPRESSION
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* The cost of CO2 capture and compression are greatly influenced by purity and
process scale.
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In-house CO2 pipeline model: to NPP for efuels
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Midwest: 4 nuclear power plants, utilizing abundant ethanol CO, ok ®

Gulf Coast: 2 nuclear power plants, utilizing CO, from ammonia plants

and pulp & paper plants

East Coast: 3 nuclear power plants, utilizing CO, from large scale pulp & Cooper Nuclear Station
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ESTABLISHED E-FUELS MODELING
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SNG- PROCESS MODELING

Process modeling of SNG production

* SNG plant was scaled for a commercial capacity (20 MT/hr), validated in Europe.

* The plant generates 1,020 MMBtu-HHV/hr SNG, 3% of national average NG pipeline throughput, with energy
efficiency of 77% (without steam byproduct) and 91% (with steam byproduct)
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Techno-economic and life cycle analysis of synthetic natural gas production from low-carbon H2 and point-source or atmospheric CO2 in
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» SOEC = Solid oxide electrolyzer cell

SNG-TECHNOECONOMIC ANALYSIS (TEA)

100
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» H, production cost is based on DOE 2020 record, Fossil NG cost is based on EIA data, RNG cost is based on literature

» The SNG product cost with a lower electricity price and 45V H, credit could be comparable to Fossil NG and RNG
cost depending on CO, source




Nuclear energy
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FT FUELS PRODUCTION COST- BRAIDWOOD NUCLEAR
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Hydrogen cost is key cost driver for synfuels production, even with 45 V tax credit.
The impact of 45Q is smaller than that of 45V using nuclear energy.

Techno-economic analysis and life cycle analyslif of e-fuel production using nuclear energy, Argonne S
HE Delgado, V Cappello, G Zang, P Sun, C Ng,, ...Journal of CO2 Utilization 72, 102481



E-fuels -methanol
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SUMMARY

» We thank the great support from various DOE offices (HFTO, Nuclear office,
ARPA-E, BETO)

» \We evaluate various technologies through full value chain of e-fuels, with Aspen
modeling of various production technologies (continuous and dynamic operation)
and infrastructure modeling

= We develop in-house H, infrastructure, NH; infrastructure and CO, pipeline
model.

= For e-fuels production, the key cost driver is H, cost. In U.S.A, IRA credit, e.g.
45V has a significant impact.
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MORE INFORMATION

Jowrnal of CO2 Utilization 83 (2024) 102791

Contents lists available at ScienceDirect

Journal of CO2 Utilization

ELSEVIER

journal homepage: www.elsevier com/locata/jcou

Techno-economic and life cycle analysis of synthetic natural gas production
from low-carbon H, and point-source or atmospheric CO, in the
United States

Jowrnal of CO2 Utilization 72 (2023) 102481

Contents lists available at ScienceDirect

Journal of CO2 Utilization

journal homepage: www.elsevier.com/locate/jcou

ELSEVIER

Techno-economic analysis and life cycle analysis of e-fuel production using
nuclear energy

Hernan F Neleadn” Vinrenza Cannelln® Guivan Zane” Pinenine Sun™ Clarence Ne ™

Journal of CO2 Utilization 46 (2021) 101459
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‘Contents lists available at ScienceDirect

Journal of CO2 Utilization

ELSEVIER

Jjournal homepage: www.elsevier.com/locatefjcou

Performance and cost analysis of liquid fuel production from Hs and CO,
based on the Fischer-Tropsch process

Guiyan Zang *, Pingping Sun, Amgad A. Elgowainy, Adarsh Bafana, Michael Wang

Systems Assessment Center, Energy Systems Division, Argoune National Labaratory, 9700 South Cass Avenue, Lemont, IL, 60439, United States
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COUROMET

pubs.acs.org/est

Technoeconomic and Life Cycle Analysis of Synthetic Methanol
Production from Hydrogen and Industrial Byproduct CO,

Cuivan Zano ¥ Pinonine Sin Amoad Floawainu and Michael Wano

SA

pubs.acs.org/est

Synthetic Methanol/Fischer—Tropsch Fuel Production Capacity,
Cost, and Carbon Intensity Utilizing CO, from Industrial and Power
Plants in the United States

Guiyan Zang,™ Pingping Sun, Eunji Yoo, Amgad Elgowainy, Adarsh Bafana, Uisung Lee, Michael Wang,
and Sarang Supekar
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View Article Online
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Techno-economic performances and life cycle
oot e cnen 20s 20 dr€ENHOUSE gas emissions of various ammonia
w0 production pathways including conventional,

M) Check for updates

128 (2024) 205389

Contents lists available at ScienceDirect

Gas Science and Engineering

ELSEVIER

journal homepage: www.journals.elsevier.com/gas-science-and-engineering
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Blending low-carbon hydrogen with natural gas: Impact on energy and life %55

cycle emissions in natural gas pipelines
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THANK YOU!
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