



# What we can learn from the development and applications of remote emission sensing in Europe over the last couple of years?

Ake Sjodin

#### IVI Swedish Environmental Research Institute







Ministry of Environment





# **Europe from a RES perspective 2017-2022**









Ministry of Environment of Denmark Environmental Protection Agency







#### Content

- Results from RES type 1 measurements
- Further development and applications of RES type 2
- Further development and applications of RES type 3
- Summary and future perspectives















# **RES type 1 measurements**

















Environmental Protection Agency







# Average $NO_{\chi}$ emissions for passenger cars by fuel type and Euro standard in three cities



#### Average PM emissions for passenger cars by fuel type and Euro standard in three cities



#### NO<sub>x</sub> emissions by engine family diesel cars Euro 5 and Euro 6abc



Euro 6a-c: NO<sub>v</sub> performance by vehicle family

Campaign Prague 2022 • Milan 2021 A Krakow 2021





Campaign

Materials Science and Technology



Prague 2022 

Milan 2021 

Krakow 2021



**Ministry of Environment** Protection Agency







**REF: CARES** 

project - report link

# NO<sub>X</sub> emissions by engine family diesel cars Euro 6d-temp and Euro 6d



REF: CARES project – report link







Ministry of Environment of Denmark Environmental Protection Agency







# **Identification of high-emitting diesel Euro 5 cars**

Ministry of Environment

Protection Agency



Empa

Materials Science and Technology

- 1 measurement
- 2 measurements
- 5 measurements

VTI

10 measurements

REF: Qui and Borken-Kleefeld, 2022



# HDV tampering study in Flanders 2019



"..... an extraordinarily successful anti-tampering campaign, in which heavy goods vehicles were tested on-road in real-time by EDAR. During these tests, the system's live interface identified highemitting trucks that potentially utilized tamper devices based on the truck's real-time NOx emissions. Subsequently, suspicious trucks were pulled over for a roadside inspection by the federal police. This anti-tampering campaign increased the tampering detection success rate from 9% to over 83%."







### Content

- Results from RES type 1 measurements
- Further development and applications of RES type 2
- Further development and applications of RES type 3
- Summary and future perspectives















# **TU Graz RES type 2 sensors**

#### **PN (particle number)**



#### **BC** (black carbon)

















# **RES type 2 PN comparison with PEMS**



REF: Knoll et al., 2024















# **RES type 2 BC comparison with PEMS**



REF: Knoll et al., 2024





Swedish Environmental Research Institute Ministry of Environme of Denmark Environmental Protection Agency







#### RES type 2 PN and BC emissions by vehicle category, fuel type and Euro class



## **RES type 2 PN measurements to identify high-emitters**

|                |           |           | PS BC  | PS PN                  | <b>INSPECTION P</b> | 'N                                                                        |                |
|----------------|-----------|-----------|--------|------------------------|---------------------|---------------------------------------------------------------------------|----------------|
| Vehicle        | Reg. Year | Fuel type | (g/kg) | (10 <sup>14</sup> /kg) | (#/cm³)             | Inspection comment                                                        |                |
| FORD Transit   | 2008      | Diesel    | -      | -                      | 3,00E+06            | Missing ANPR detection                                                    |                |
| MAN TGL 12.250 | 2011      | Diesel    | -      | -                      | 9,00E+07            | Missing license plate information                                         |                |
| FIAT Doblo     | 2014      | Diesel    | 0,43   | 77                     | 9,00E+06            | Expired technical inspection                                              |                |
| FORD Transit   | tbd       | Diesel    | 0,65   | 62                     | 3,00E+07            |                                                                           |                |
| FORD Galaxy    | 2012      | Diesel    | 2,99   | 36                     | -                   | 393k mileage, no working DPF according to<br>inspection, no PN inspection |                |
| SKODA Octavia  | tbd       | Diesel    | -      | -                      | 3,00E+06            | Missing ANPR detection                                                    |                |
| PEUGEOT 407    | 2008      | Diesel    | 1,8    | 39                     | 2,00E+06            |                                                                           |                |
| SKODA Superb   | tbd       | Diesel    | -      | -                      | 2,30E+06            | Vehicles too close for proper plume separation                            |                |
| IVECO Daily    | 2011      | Diesel    | -      | -                      | 5,00E+06            | Missing ANPR detection                                                    |                |
| VW Transporter | 2009      | Diesel    | 1,38   | 109                    | 1,35E+07            |                                                                           |                |
| AUDI A3        | tbd       | Diesel    | -      | -                      | 1,40E+07            | Missing ANPR detection                                                    |                |
| MERCEDES BENZ  | 2001      | Diesel    | 19,51  | 386                    | -                   | Visible smoke during acceleration, no PN inspection                       | Proofed high e |
| DACIA Logan    | 2015      | Petrol    | 0,37   | 4,9                    | -                   | No PN inspection                                                          |                |
| SKODA Octavia  | 2007      | Diesel    | 0,17   | 12,4                   | -                   | No PN inspection                                                          |                |
| FORD S-Max     | 2006      | Diesel    | 2,78   | 63,2                   | -                   | No PN inspection                                                          |                |
| HYUNDAI i30    | tbd       | Petrol    | -      | -                      | 4,50E+04            | No high emitter, vehicles too close for proper plume separation           |                |

Proofed low emitter Suspicious vehicle

REF: Presentation link

PTI inspection limit PN:250'000 - 1'000'000 # per cm³ (Euro 5, 6 Diesel)RDE limit: $250'000 # per cm³ \Leftrightarrow PN 1,5 * 6*10^{11} # per km \Leftrightarrow 1,8*10^{13} # per kg fuelPS threshold (tentative):> 1*10<sup>14</sup> # per kg fuel , incl. safety margin$ 















### Content

- Results from RES type 1 measurements
- Further development and applications of RES type 2
- Further development and applications of RES type 3
- Summary and future perspectives















### Airyx/Uni Heidelberg RES type 3 development



















# **RES type 3 vs PEMS NO<sub>x</sub> comparison**



REF: Presentation link





Swedish Environmental Research Institute Ministry of Environm of Denmark Environmental Protection Agency







# **RES type 3 truck tampering detection (Brno, CZ)**





## **RES type 3\_truck tampering detection (Brno, CZ)**

# **RES type 3 truck tampering detection (Brno, CZ)**

















## Content

- Results from RES type 1 measurements
- Further development and applications of RES type 2
- Further development and applications of RES type 3
- Summary and future perspectives















# Summary and future perspectives

- For given conditions, all three types of RES are capable of correctly identifying gross-polluting vehicles in real-world traffic
- RES measurements conducted in Europe over the last couple of years confirm that new legislation has resulted in large reductions of both particulate matter and NO<sub>X</sub> emissions from diesel vehicles
- Also, RES has become more accurate and cost-effective to use
- A more regular and systematic use of RES, e.g., to support and evaluate ISC, IUC and PTI programs, could be beneficial for European air pollution policy in the future

















## Thank you for your attention!

#### Contact: ake.sjodin@ivl.se









**Ministry of Environment** Protection Agency





