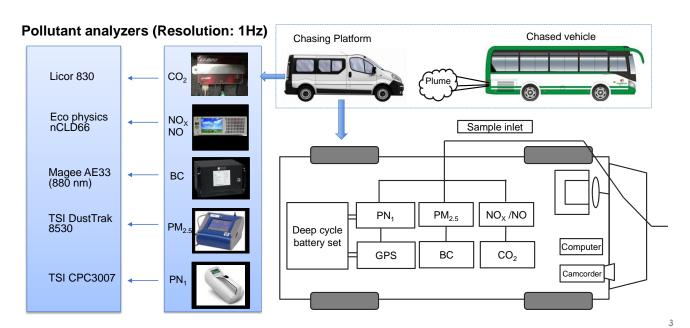


Mobile plume chasing development for heavy-duty vehicles emissions in China

Shaojun Zhang, Hui Wang, Xiaomeng Wu, Ye Wu Tsinghua University June 2024



- System development and reliability verification
- Real-world emissions by a large-scale test
- Applications based on plume chasing results
- Summary and future perspectives

Mobile Plume chasing platform development (1Hz)

- Using a mobile platform equipped with a rapid response instrument system to chase the target vehicle
 - ✓ Real-world NO_X and BC emission factors (g/kg-fuel)
 - ✓ Identify high-emitters


Chasing platform and instruments

Real-time concentration display and database

- Real-time display the concentration of CO₂, NO_X, BC and other pollutants
- Dataset construction: raw data, vehicle info, driving condition and emission factor

> Raw test data

- Concentration
- Speed, Location
- Tem, RH, WS,WD
- Plate number
- Load
- Record video
- ..

> Vehicle info

(~71% queried in VECC database)

Fuel

Type

тур

GVW

Brand

Emission standard

Registration date

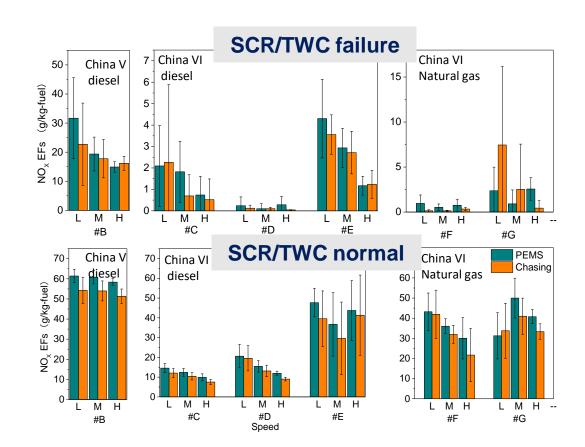
Driving condition

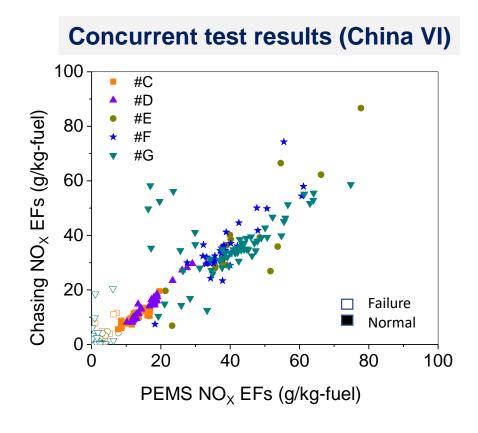
- Individual EF
- Speed, Location
- Tem., RH
- Background conc.

> Emission factors

 NO_X , BC

g/kg_fuel

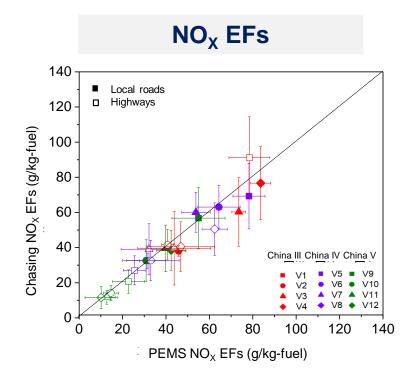

g/km

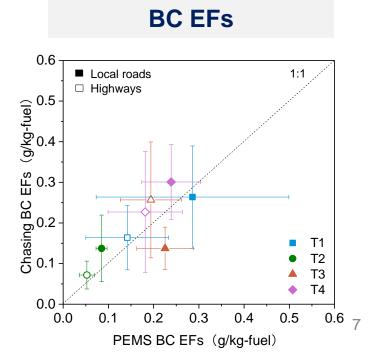

g/kWh

..

PEMS Validation of plume chasing: track testing

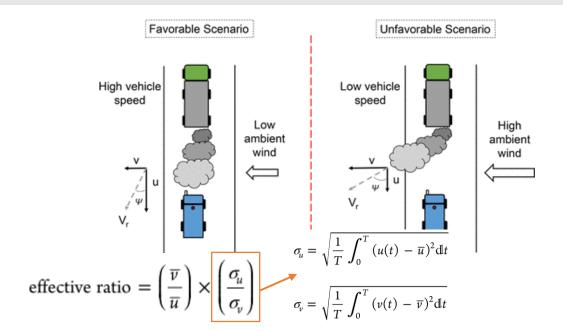
- The low-emitting China VI vehicles can be effectively captured by plume chasing
- Significant differences were identified by plume chasing between after-treatment normal vs. failure vehicles

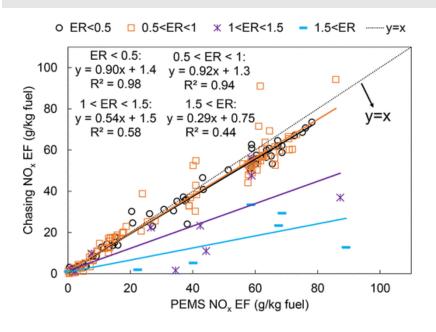



Good agreement of NO_X and BC emission factors between plume chasing and PEMS

• Real-world concurrent chasing-PEMS test: 12 China III-China V HDTs, 245 plume chasing tests NO_X vehicle-specific EFs: approximately \pm 20% between chasing and PEMS results BC vehicle-specific EFs: +10% relative error at local roads and +27% at highways

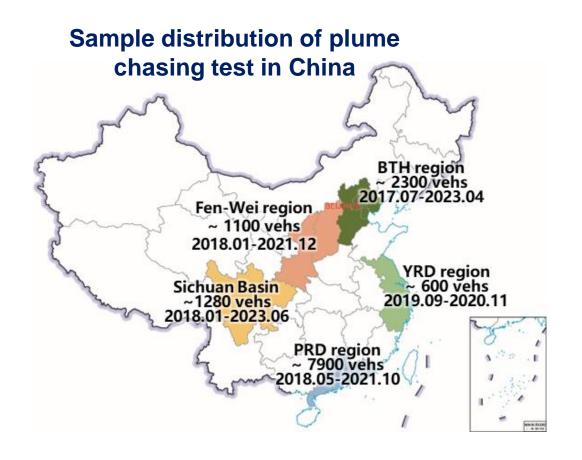
Concurrent test on real road

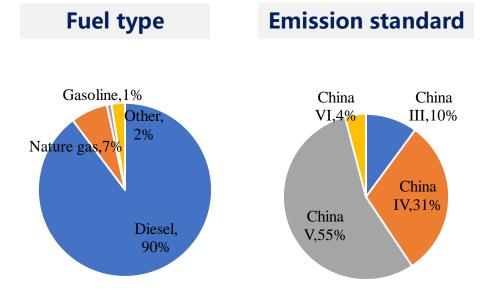



Sensitivity analysis of plume chasing results to environmental conditions

- Effective ratios (ER): reflected wind speed and wind direction
- Significant correlation between ER and Chasing NO_X EFs: ER can be used to filter valid data
 and improve the reliability of the chasing test, indicating the impact from cross wind

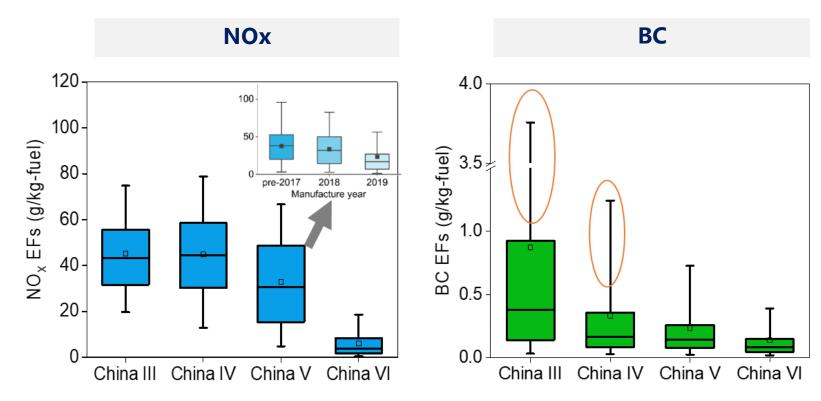
Two methodological scenarios for chasing test


Comparison of chasing-PEMS EFs for different effective ratios


- System development and reliability verification
- Real-world emissions by a large-scale test
- Applications based on plume chasing results
- Summary and future perspectives

Overall progress in China's plume chasing measurements

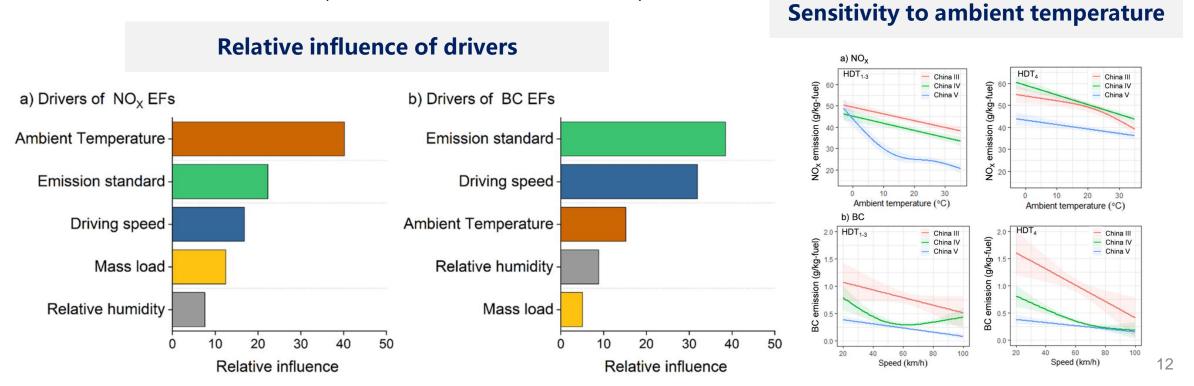
- Large-scale real-world chasing tests have been conducted in multiple regions of China
- A total of nearly 13,000 samples were collected, ~ 70% matched with detailed vehicle information



Fleet composition of chased vehicles

Plume chasing confirmed China's recent progress in reducing NO_X emissions from diesel trucks

- NOx: Limited reduction from China III to China V. Significant NO_X control benifits have been confirmed for post-2018 China V and China VI HDTs.
- **BC:** Significant reductions from China III to China VI, but high-emitters still exist. Fleet-average BC EFs are 1.6-2.3 times than the fleet-median value

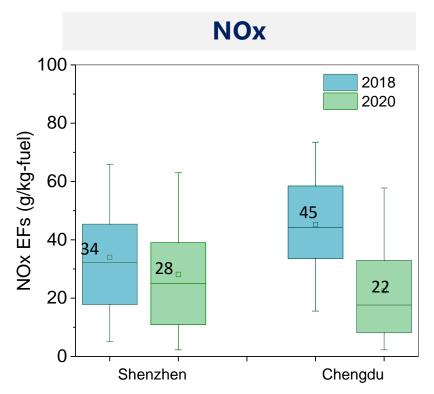


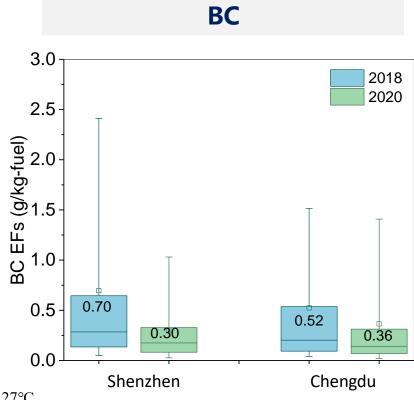
Key drivers of NO_X and BC emissions were investigated by plume chasing

 Gradient Boosting Machine (GMB) model to identify the key drivers: ambient temperature for NO_X, emission standard and speed for BC

• Low temperature penalty: 137% NO_X emissions increase when ambient temperature

from -3°C to +35°C (4.5-31 tons China V HDTs)

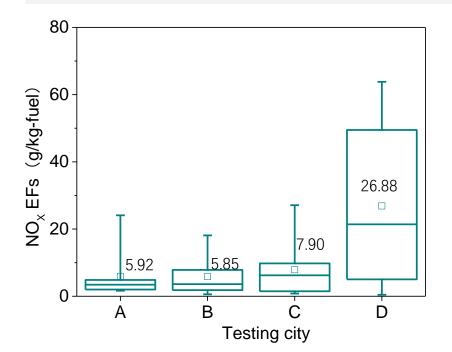

Wang et al., Emission measurements on a large sample of heavy-duty diesel trucks in China by using mobile plume chasing. Environmental Science & Technology.


- System development and reliability verification
- Real-world emissions by a large-scale test
- Applications based on plume chasing results
- Summary and future perspectives

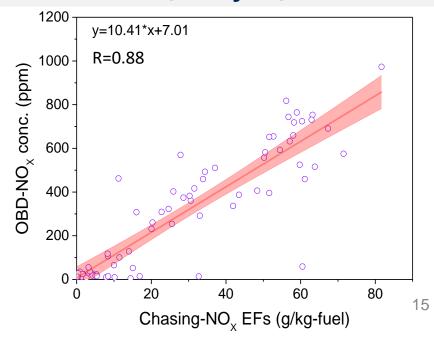
Continuous tracking and evaluation of fleet-average emissions based on plume chasing test method

Significant decrease in fleet average emissions has been observed from 2018 to 2020:

- Shenzhen showed a reduction of 17% in NO_x and 57% in BC emissions
- Chengdu showed a decrease of 50% in NO_X and 31% in BC emissions



Note: Tem. during Chengdu' test: 2018, 13°C; 2020, 22 °C; Tem. during Shenzhen' test: 2018, 28°C; 2020, 27°C

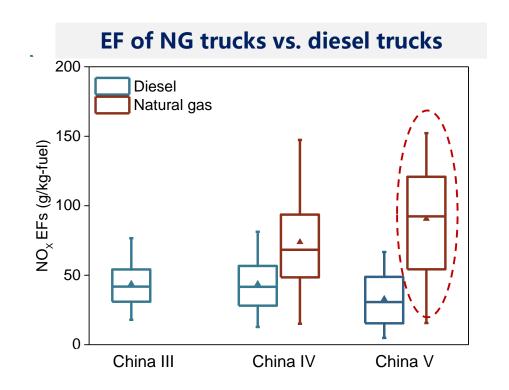

Plume chasing revealed NO_X emission discrepancy for China VI vehicles measured in different cities

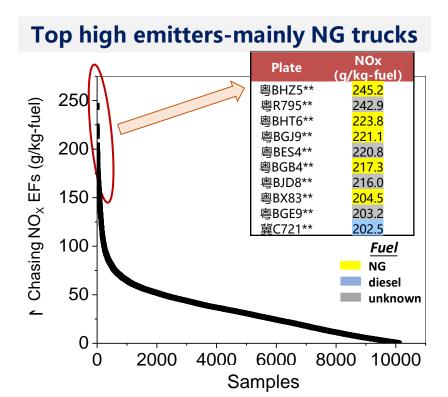
- The fleet average NO_x EFs in City D is **3.4-4.6** times that of other cities
- In City D, for 104 China VI HDDTs, the consistency between plume chasing and OBD data is well verified, Pearson R=0.88

NO_X emissions of China VI HDTs

Good agreement of Chasing-OBD results (in city D)

Plume chasing shows a good agreement with the annual inspection results(Lug down tests, more than 20 provinces)

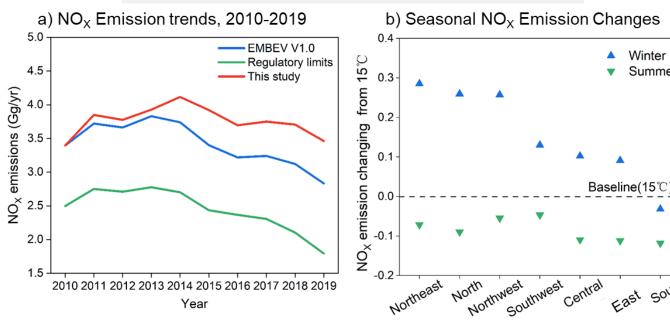

- Manufacture Year: both show NO_x reduction with model year, Pearson R=0.9
- Vehicle manufacturer: three of the five OEMs with the worst lug-down emission results were also the worst in plume chasing, Pearson R=0.6
- Suggest that our plume chasing samples are good representatives of Chinas in-use HDVs


Manufacture year				
MY	I/M program (ppm)	NOx	Plume chas (g/kg-fu	Ū
2016		641.3		35.6
2017		578.9		36.7
2018		543.2		30.9
2019		523.7		29.1
2020		494.3		23.4

Vehicle manufacturer			
OEMs	I/M program NOx (ppm)	Plume chasing NOx (g/kg-fuel)	
Α	424.4	21.1	
В	730.1	40.7	
C	372.4	18.2	
D	600.7	29.6	
Е	<mark>49</mark> 1.2	18.5	
F	609.3	32.2	
G	355.5	26.8	
Н	299.5	10.3	
I	303.7	12.5	
J	665.2	11.0	
K	656.9	35.2	
L	574.1	28.0	
М	544.6	35.9	
N	537.2	30.4	
0	506 .4	36.6	

Real-world high NO_X emissions from NG trucks drive the early implementation of China VI for NG

- Plume chasing has revealed much higher NO_X emissions of natural gas China IV/V trucks using lean-burn engines
- The finding directly prompted the early implementation of China VI NG HDV emission standard (a switch to stoichiometric engine plus TWC)


Updating localized emission models and inventories based on plume chasing test results

- Revisit historical emission trends: previous studies underestimate 18% compared to the updated emission inventory in China in 2019
- **low-temperature penalty:** caused a 9–29% increase in NO_X emissions in winter in major regions of China

Improvement of emission factor model

- Basic emission factors for HDTs
- Corrections for emission factors
 - ✓ Temperature correction factor (C_{temp})
 - ✓ Speed correction factor (C_{speed})
 - ✓ High-emitter correction (C_{high-emitter}, BC)

Annually variations in NO_X emissions

- System development and reliability verification
- Real-world emissions by a large-scale test
- Applications based on plume chasing results
- Summary and future perspectives

Summary and Recommendation

Summary

- Plume chasing is validated to applicably measure real-world emissions from heavy-duty vehicles, including low-emission China VI vehicles, and is also sensitive to identify after-treatment failures
- A large-scale plume chasing test involving 13,000 vehicles revealed limited NOx emission reductions in China IV and V diesel vehicles, and high emissions from lean-burn natural gas vehicles
- Plume chasing results have been used to update key modules of the national emission inventory, such as ambient temperature, speed, and the high emitters module

Recommendation

- We recommend to develop testing standard on mobile plume chasing in China as well as in other regions to promote the application
- Accumulate plume chasing in various regions and years to improve emission accounting
- Important to synchronize plume chasing with other testing methods, in particular on-board monitoring (OBM), to enhance the capability of high-emitting detection and in-use compliance enforcement

Thanks for your time!

Contact information

zhsjun@mail.tsinghua.edu.cn

Shaojun Zhang