

The RDE legislation; PEMS opportunities & challenges

Rasmus Pettinen

VTT Technical Research Centre of Finland

Ministry of Environment of Denmark

Environmental Protection Agency

An overview of passenger car emission legislation in EU

- Large and ambitious leaps in emission reduction has been deployed throughout the history of EU emission legislation
 - E.g. since 2000 (Euro 3) to Euro 6 \rightarrow NOx limit for diesels has been decreased from 500 mg to 80 mg NOx/km
- Since the Diesel scandal, it was publicly understood that fundamentally, the methodology and thus correlation between laboratory and real world emissions was a huge problem
- Since the deployment of Euro 6, great development has been seen
 - Laboratory tests: NEDC \rightarrow WLTP
 - Deployment of RDE testing
 - Requirements for RDE testing were gradually improved
 - + Durability and "in service conformity" (ISC) requirements
- Eventually, Euro 7 has been provisionally agreed and announced, waiting for formal approval

CI (Diesel)						
Emission class	NOx emissions					
(EU)	mg/km					
Euro 3	500					
Euro 4	250					
Euro 5	180 🖵					
Euro 6	80					

An overview of Euro 6 and Euro 7 emission regulation												
Class	Туре	Date	со						PN23	PN10	Durability requ	lirements
									#*10^	11/km	km	years
M1	PI	Sep 2014	1000	100	-	60	-	5	6	-	100 000	5
M1	CI	Sep 2014	500	170	-	80	170	5	6	-	100 000	5
M1	PI	2025/2026?	1000	100	68	60	-	4.5	-	6	160 000/200 000*	8/10*
M1	CI	2025/2026?	500	-	68	80	170	4.5	-	6	160 000/200 000*	8/10*
	M1 M1 M1	M1 PI M1 CI M1 PI	M1 PI Sep 2014 M1 CI Sep 2014 M1 PI 2025/2026?	Class Type Date CO M1 PI Sep 2014 1000 M1 CI Sep 2014 500 M1 PI 2025/2026? 1000	Class Type Date CO HC M1 PI Sep 2014 1000 100 M1 CI Sep 2014 500 170 M1 PI 2025/2026? 1000 100	Class Type Date CO HC NMHC M1 PI Sep 2014 1000 100 - M1 CI Sep 2014 500 170 - M1 PI 2025/2026? 1000 100 68	Class Type Date CO HC NMHC NOx M1 PI Sep 2014 1000 100 - 60 M1 CI Sep 2014 500 170 - 80 M1 PI 2025/2026? 1000 100 68 60	Class Type Date CO HC NMHC NOx THC + NOx M1 PI Sep 2014 1000 100 - 60 - M1 Cl Sep 2014 500 170 - 80 170 M1 PI 2025/2026? 1000 100 68 60 -	Class Type Date CO HC NMHC NOx THC + NOx PM M1 PI Sep 2014 1000 100 - 60 - 5 M1 Cl Sep 2014 500 170 - 80 1700 5 M1 PI 2025/2026? 1000 100 68 600 - 4.5	Class Type Date CO HC NMHC NOx THC + NOx PM PN23 M1 PI Sep 2014 1000 100 - 60 - 5 6 M1 Cl Sep 2014 500 170 - 80 170 5 6 M1 PI 2025/2026? 1000 100 68 60 - 4.5 -	Class Type Date CO HC NMHC NOx THC + NOx PM PN23 PN10 M1 PI Sep 2014 1000 100 - 60 - 5 6 - M1 Cl Sep 2014 500 170 - 80 170 5 6 - M1 PI 2025/2026? 1000 100 68 60 - 4.5 - 6	Class Type Date CO HC NMHC NOx THC + NOx PM PN23 PN10 Durability required M1 PI Sep 2014 1000 100 - 60 - 5 6 - 100 000 M1 Cl Sep 2014 500 170 - 80 170 5 6 - 100 000 M1 PI 2025/2026? 1000 100 68 60 - 4.5 - 6 160 000/200 000*

*additional lifetime

PI = positive ignition, ie. petrol/gasoline vehicles

CI = Compression ignition, ie. diesel vehicles

The Evolution of RDE testing

- In early 2010 JRC/EU launched a program for development of a regulatory RDE procedure
- RDE regulation was initially deployed in 2016, and has since then been revised multiple times
- The amendments set continuously lower limits for real-world emissions (conformity factors), thus improves correlation between real world conditions and in lab measurements
- Euro 7 follow the similar path, with further improvements in both ISC and durability requirements
- But, what is the true emission characteristics in real world conditions of pre/post RDE vehicles?

RDE procedure	Regulation phase	Published	New type approvals	All vehicles	NO _x CF	PN CF
-	Euro 6 a	-	-	-	-	-
-	Euro 6 b	-	-	-	-	-
1st RDE package	Euro 6 c	March 2016	September 2017	September 2018	Monitor	ing only
2nd RDE package	Euro 6 d-TEMP	April 2016	September 2017	September 2019	2.1	-
3rd RDE package		June 2017	September 2017	September 2018	2.1	1.5
4th RDE package	Euro 6 d	November 2018	January 2020	January 2021	1.43	1.5
Euro 6e RDE	Euro 6 e	August 2022	September 2023	September 2024	1.1	1.34
Euro 7 RDE	Euro 7	April 2024, waiting for formal approval	30 months from entry into force	42 months from entry into force	1	1
Euro 7 RDE	Euro 7 "additional lifetime"	April 2024, waiting for formal approval	30 months from entry into force	42 months from entry into force	1.2	1.2

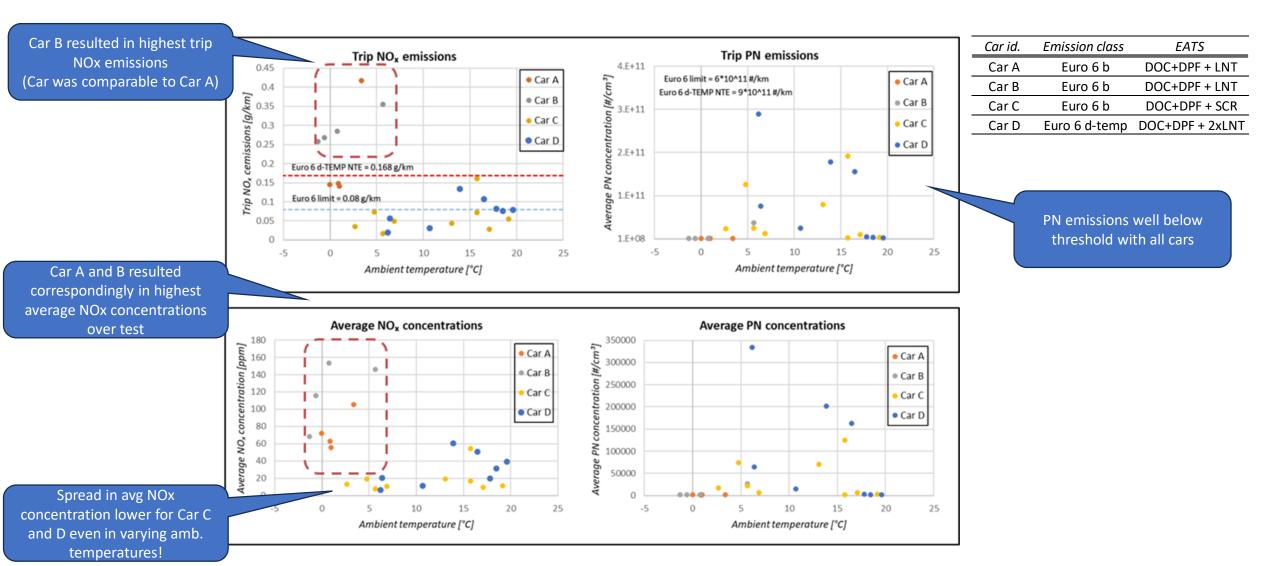
Population phase		NOx	RDE PN [#*10^11/km]
Regulation phase	PI	/km] CI	
Euro 6 d-TEMP	126	168	9.0
Euro 6 d	86	114	9.0
Euro 6 e	66	88	8.0
Euro 7	60	80	6.0
Euro 7 "additional lifetime"	72	96	7.2

Demonstration of Euro 6 diesel car emissions -A PEMS campaign in Helsinki

- The emission performance of 4 diesel vehicles were demonstrated
 - Non RDE regulated Euro 6 b + RDE regulated Euro 6 d-temp
 - Both LNT and SCR vehicles included
- Goal: Determine and quantify typical emission performance (NOx & PN) in various ambient conditions

				_ ·					
Car id.	Туре	Model year	Emission class	Engine displacement [l]	NO _x conformity factor	PN conformity factor	Transmission	EATS	Vehicle mileage [km]
Car A	Estate	2015	Euro 6 b*	1.6	-	-	M6	DOC+DPF + LNT	73 500
Car B	Estate	2017	Euro 6 b*	1.6	-	-	M5	DOC+DPF + LNT	24 800
Car C	Estate	2014	Euro 6 b*	1.6	-	-	M6	DOC+DPF + SCR	59 100
Car D	Hatchback	2018	Euro 6 d-temp	1.5	2.1	1.5	AT8	DOC+DPF + 2xLNT	2000

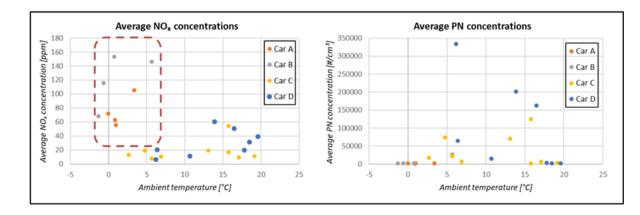
*vehicle type-approved outside RDE regulation, i.e. no RDE testing nor RDE limit applied

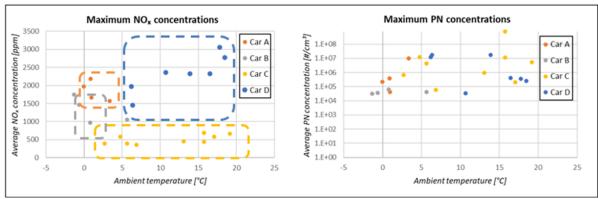

Test conditions

- RDE compliant test route in Helsinki metropolitan area
- Ambient conditions varied between 1.3 °C to ca. 20 ° C
- 4 to 7 tests per vehicle conducted, 24 in total

Car	Number of PEMS tests	Average trip ambient temperature range [°C]
Car A	4	0.9 to 3.4
Car B	4	-1.3 to 5.7
Car C	9	2.7 to 19.2
Car D	7	6.2 to 19.6
Total	24	0.9 to 19.6

Trip average emissions – NOx/PN

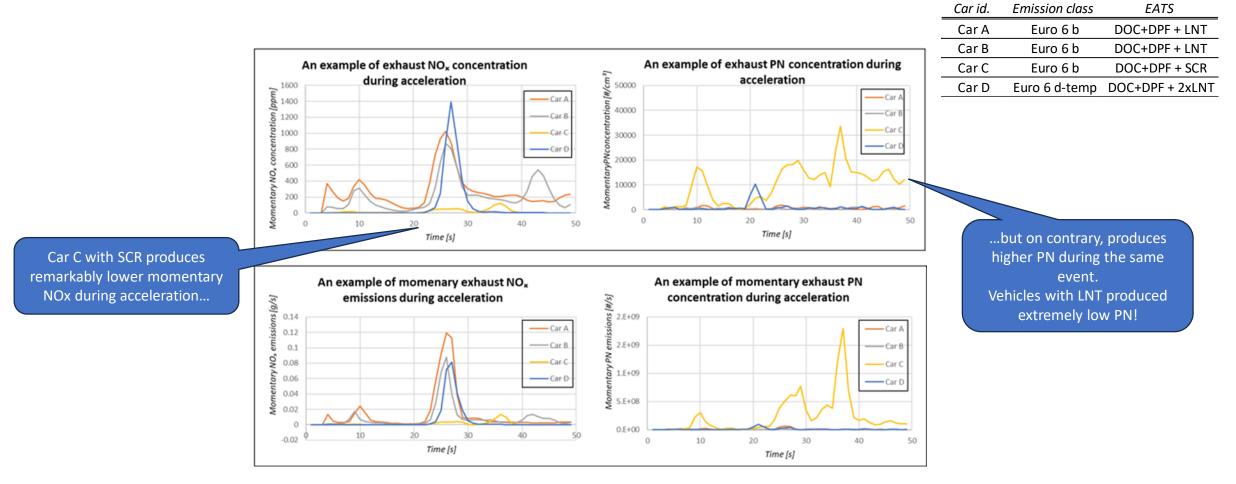



Correlation between average and peak emissions – NOx/PN

- However, correlation between average and peak emissions was found surprisingly low!
- High momentary NOx emissions during acceleration and during transient load
 - → E.g. Car D (Euro 6 d-TEMP), low average NOx recorded but on contrary, produce highest momentary peak NOx concentrations
 - \rightarrow Typically, LNT cars produced higher momentary NOx compared to SCR vehicle
 - ightarrow Euro 6b vehicle, Car C with SCR, NOx peaks below 1000 ppm in all tests

_	Car id.	Emission class	EATS
	Car A	Euro 6 b	DOC+DPF + LNT
	Car B	Euro 6 b	DOC+DPF + LNT
	Car C	Euro 6 b	DOC+DPF + SCR
	Car D	Euro 6 d-temp	DOC+DPF + 2xLNT

ightarrow Euro 6d-TEMP, Car D with twin LNT produced NOx peaks between 1500 ppm to 3000 ppm!



Examples of momentary emission behavior (1/2)

- It was found that the emission peaks were emitted in certain areas
 - \rightarrow e.g. in junctions when accelerating from urban areas to highways

Examples of momentary emission behavior (2/2)

What can we learn?

- The deviation in emission performance for pre/post RDE era cars seem be rather large
- Influence of EATS strategy is high especially for NOx emissions , e.g. SCR vs LNT
 - The difference in NOx characteristics in transient events between LNT and SCR were in this case evident
 - SCR performance was excellent even during rapid accelerations for the Euro 6 b vehicle
 - High momentary NOx emissions are possible even for cars with low overall NOx emissions
 - Vehicle EATS should be considered if evaluated with RES monitoring!
- Cars equipped with DPF did in this demonstration perform overall very well
 - Similarly, as for the NOx characteristics, PN trends could be classified depending on used NOx reduction technology
 - The car with SCR produced evidently higher PN during acceleration, most likely due to particulate formation from urea injection
 - However, due to low particulate concentrations, defect or tampered DPF devices could be easily identified

Summary & conclusions

- From the regulatory perspective, the higher the emission class, the likelihood for high momentary emissions during real world driving decreases and more consistent emissions performance is expected
 - Correlation between laboratory testing and RDE response increase significantly
 - Considering later Euro 6 class cars and Euro 7, very good emission performance is expected
 - \rightarrow The difference between a defect/tampered/abnormal EATS compared to expected values higher
- This does not however seem to be the case for early RDE regulated vehicles (e.g. Euro 6 d-TEMP)
 - Based on momentary emissions obtained, identification of high emitters within early Euro 6 can be challenging
 - E.g. durability obligations due to age and high mileage is furthermore dominant (Euro 6 d-TEMP launched in 2016/2017)
 - Results indicate that car specific EATS should be considered when evaluating momentary emissions, e.g. in RES measurements, as shown for SCR vs LNT

Thank you!

Rasmus Pettinen

VTT Technical Research Centre of Finland

rasmus.pettinen@vtt.fi

+358 40 1504 796